
8-bit
RISC
Microcontroller

Application
Note
AVR910: In-System Programming

Features
• Complete In-System Programming Solution for AVR Microcontrollers
• Covers All AVR Microcontrollers with In-System Programming Support
• Reprogram Both Data Flash and Parameter EEPROM Memories
• Complete Schematics for Low-cost In-System Programmer
• Simple Three-wire SPI Programming Interface

Introduction
In-System Programming allows programming and reprogramming of any AVR micro-
controller positioned inside the end system. Using a simple Three-wire SPI interface,
the In-System Programmer communicates serially with the AVR microcontroller,
reprogramming all non-volatile memories on the chip.

In-System Programming eliminates the physical removal of chips from the system.
This will save time, and money, both during development in the lab, and when updat-
ing the software or parameters in the field.

This application note shows how to design the system to support In-System Program-
ming. It also shows how a low-cost In-System Programmer can be made, that will
allow the target AVR microcontroller to be programmed from any PC equipped with a
regular 9-pin serial port. Alternatively, the entire In-System Programmer can be built
into the system allowing it to reprogram itself.

The Programming Interface
For In-System Programming, the programmer is connected to the target using as few
wires as possible. To program any AVR microcontroller in any target system, a simple
Six-wire interface is used to connect the programmer to the target PCB. Figure 1
below shows the connections needed.

The Serial Peripheral Interface (SPI) consists of three wires: Serial ClocK (SCK), Mas-
ter In – Slave Out (MISO) and Master Out – Slave In (MOSI). When programming the
AVR, the In-System Programmer always operate as the Master, and the target system
always operate as the Slave.

The In-System Programmer (Master) provides the clock for the communication on the
SCK Line. Each pulse on the SCK Line transfers one bit from the Programmer (Mas-
ter) to the Target (Slave) on the Master Out – Slave In (MOSI) line. Simultaneously,
each pulse on the SCK Line transfers one bit from the target (Slave) to the Program-
mer (Master) on the Master In – Slave Out (MISO) line.
Rev. 0943E–AVR–08/08

Figure 1. Six-wire Connection Between Programmer and Target System

To assure proper communication on the three SPI lines, it is necessary to connect ground on the
programmer to ground on the target (GND).

To enter and stay in Serial Programming mode, the AVR microcontroller reset line has to be kept
active (low). Also, to perform a Chip Erase, the Reset has to be pulsed to end the Chip Erase
cycle. To ease the programming task, it is preferred to let the programmer take control of the tar-
get microcontroller reset line to automate this process using a fourth control line (Reset).

To allow programming of targets running at any allowed voltage (2.7 - 6.0 V), the programmer
can draw power from the target system (VCC). This eliminate the need for a separate power sup-
ply for the programmer. Alternatively, the target system can be supplied from the programmer at
programming time, eliminating the need to power the target system through its regular power
connector for the duration of the programming cycle.

Figure 2 shows the connector used by this In-System Programmer to connect to the target sys-
tem. The standard connector supplied is a 2 x 3 pin header contact, with pin spacing of 100 mils.

Figure 2. Recommended In-System Programming Interface Connector Layout (Top View)

Hardware
Design
Considerations

To allow In-System Programming of the AVR microcontroller, the In-System Programmer must
be able to override the pin functionality during programming. This section describes the details
of each pin used for the programming operation.

GND The In-System Programmer and target system need to operate with the same reference voltage.
This is done by connecting ground of the target to ground of the programmer. No special consid-
erations apply to this pin.

RESET The target AVR microcontroller will enter Serial Programming mode only when its reset line is
active (low). When erasing the chip, the reset line has to be toggled to end the erase cycle. To
simplify this operation, it is recommended that the target reset can be controlled by the In-Sys-
tem Programmer.

Immediately after Reset has gone active, the In-System Programmer will start to communicate
on the three dedicated SPI wires SCK, MISO, and MOSI. To avoid driver contention, a series
resistor should be placed on each of the three dedicated lines if there is a possibility that exter-
nal circuitry could be driving these lines. The connection is shown in Figure 3. The value of the
resistors should be chosen depending on the circuitry connected to the SPI bus. Note that the

PC 9-PIN
SERIAL PORT

IN-SYSTEM
PROGRAMMER

TARGET AVR MCU
AT90SXXXX

VCC
RESET
MISO
MOSI
SCK

VCC
RES

MISO
MOSI
SCK

GND

TXD
RXD
GND

TXD
RXD
GND

1

3

5

4

6

2 VCC

MOSI

GND

MISO

SCK

RESET
2
0943E–AVR–08/08

AVR910

AVR910
AVR microcontroller will automatically set all its I/O pins to inputs, with pull ups disabled, when
Reset is active.

Figure 3. Connecting ISP Programming Cable to Target SPI Bus

To avoid problems, the In-System Programmer should be able to keep the entire Target System
Reset for the duration of the programming cycle. The target system should never attempt to
drive the three SPI lines while Reset is active.

SCK When programming the AVR in Serial mode, the In-System Programmer supplies clock informa-
tion on the SCK pin. This pin is always driven by the programmer, and the target system should
never attempt to drive this wire when target reset is active. Immediately after the Reset goes
active, this pin will be driven to zero by the programmer. During this first phase of the program-
ming cycle, keeping the SCK Line free from pulses is critical, as pulses will cause the target AVR
to loose synchronization with the programmer. When in synchronization, the second byte ($53),
will echo back when issuing the third byte of the programming enable instruction. If the $53 did
not echo back, give Reset a positive pulse, and issue a new Programming Enable command.
Note that all four bytes of the of the Programming Enable command must be sent before starting
a new transmission.

The target AVR microcontroller will always set up its SCK pin to be an input with no pull up
whenever Reset is active. See also the description of the Reset wire.

Table 1. Connections Required for In-System Programming

Pin Name Comment

SCK Serial Clock Programming clock, generated by the In-System
Programmer (Master)

MOSI Master Out – Slave In Communication line from In-System Programmer
(Master) to target AVR being programmed (Slave)

MISO Master In – Slave Out Communication line from target AVR (Slave) to In-
System Programmer (Master)

GND Common Ground The two systems must share the same common ground

RESET Target AVR MCU Reset To enable In-System Programming, the target AVR Reset
must be kept active. To simplify this, the In-System
Programmer should control the target AVR Reset

VCC Target Power To allow simple programming of targets operating at any
voltage, the In-System Programmer can draw power
from the target. Alternatively, the target can have power
supplied through the In-System Programming connector
for the duration of the programming cycle

SPI
DEVICE

AVR
uC

ISP

MISO

MOSI

SCK
3
0943E–AVR–08/08

The minimum low and high periods for the Serial Clock (SCK) input are defined in the program-
ming section of the datasheet. For the AT90S1200 they are defined as follows:

Low: >1 XTAL1 clock cycle

High: >4 XTAL1 clock cycles

MOSI When programming the AVR in Serial mode, the In-System Programmer supplies data to the
target on the MOSI pin. This pin is always driven by the programmer, and the target system
should never attempt to drive this wire when target reset is active.

The target AVR microcontroller will always set up its MOSI pin to be an input with no pull up
whenever Reset is active. See also the description of the Reset wire.

MISO When Reset is applied to the target AVR microcontroller, the MISO pin is set up to be an input
with no pull up. Only after the “Programming Enable” command has been correctly transmitted
to the target will the target AVR microcontroller set its MISO pin to become an output. During this
first time, the In-System programmer will apply its pull up to keep the MISO line stable until it is
driven by the target microcontroller.

VCC When programming the target microcontroller, the programmer outputs need to stay within the
ranges specified in the DC Characteristics.

To easily adapt to any target voltage, the programmer can draw all power required from the tar-
get system. This is allowed as the In-System Programmer will draw very little power from the
target system, typically no more than 20 mA. The programmer shown in this application note
operates in this mode.

As an alternative, the target system can have its power supplied from the programmer through
the same connector used for the communication. This would allow the target to be programmed
without applying power to the target externally.

Programming
Protocol

Immediately after Reset goes active on the target AVR microcontroller, the chip is ready to enter
Programming mode. The internal Serial Peripheral Interface (SPI) is activated, and is ready to
accept instructions from the programmer. On the AT90S1200, it is very important to keep the

Table 2. Recommendations when Designing Hardware Supporting In-System Programming

Pin Recommendation

GND Connect ground of the target to ground of the In-System Programmer

RESET Allow the In-System Programmer to Reset the target system

SCK When the target AVR microcontroller reset is active, this line should be controlled by
the ISP Programmer. Edges on this line after Reset is pulled low will be critical,
and cause the target AVR microcontroller to loose synchronization with the
programmer. When programming, oscillations on this pin should be tolerated by the
surrounding system when the AVR Reset is active

MOSI When the target AVR microcontroller Reset is active, this line should be controlled
by the ISP Programmer. When programming, oscillations on this pin should be
tolerated by the surrounding system when the AVR Reset is active.

MISO When the target AVR microcontroller Reset is active, this line should be allowed to
become an output. When programming, oscillations on this pin should be tolerated
by the surrounding system when the AVR Reset is active

VCC Allow the In-System Programmer to draw power from the target system, to adapt to
any allowed target voltage. The maximum current needed to power the programmer
will vary depending on the programmer being used.
4
0943E–AVR–08/08

AVR910

AVR910
SCK pin stable, as one single edge will cause the target to loose synchronization with the pro-
grammer. For other devices use the synchronization algorithm specified in the datasheet. After
pulling Reset low, wait at least 20 ms before issuing the first command.

Command Format All commands have a common format consisting of four bytes. The first byte contains the com-
mand code, selecting operation and target memory. The second and third byte contain the
address of the selected memory area. The fourth byte contains the data, going in either
direction.

The data returned from the target is usually the data sent in the previous byte. Table 3 shows an
example, where two consecutive commands are sent to the target. Notice how all bytes returned
equal the bytes just received. Some commands return one byte from the target’s memory. This
byte is always returned in the last byte (byte 4). Data is alwa‘ys sent on MOSI and MISO lines
with most significant bit (MSB) first.

For details on available instructions, please refer to the Serial Programming section of the
datasheet.

Enable Memory
Access

When the Reset pin is first pulled active, the only instruction accepted by the SPI interface is
“Programming Enable”. Only this command will open for access to the Flash and EEPROM
memories, and without this access, any other command issued will be ignored. Table 3 shows
an example where memory access is enabled in the first command sent to the chip.

After a “Programming Enable” command has been sent to the target, access is given to the non-
volatile memories of the chip according to the current setting of the protecting Lock bits.

The target AVR microcontroller will not respond with an acknowledge to the “Programming
Enable” command. To check if the command has been accepted by the target AVR microcon-
troller, the device code could be read. The device code is also known as the signature bytes.

Device Code After the “Programming Enable” command has been successfully read by the SPI interface, the
programmer can read the device code. The device code will identify the chip vendor (Atmel), the
part family (AVR), Flash size in kilobytes, and family member (i.e., AT90S1200). The “Read
Device Code” command format is found in the Serial Programming section of the datasheet. As
an example, this command will, for the AT90S1200, be [$30, $XX, $adr, $code]. Valid addresses
are $00, $01 and $02. Table 4 shows what the expected result will be.
.

Table 5 indicates that Device Code will sometimes read as $FF. If this happens, the part device
code has not been programmed into the device. This does not indicate an error, but the part has
to be manually identified to the programmer.

Device code $FF might also occur if there is no target ready or if the MISO line is constantly
pulled high. The programmer can detect this situation by detecting that also a command sent to
the target is returned as $FF.

If the target reports Vendor Code $00, Part Family $01, and Part Number $02, both Lock bits
have been set. This prevents the memory blocks from responding, and the valued returned will
be the byte just received from the programmer, which just happens to be the current address. To
erase the Lock bits, it is necessary to perform a valid “Chip Erase”.

Table 3. Example, Enabling Memory Access and Erasing the Chip

Action
MOSI, Sent to

Target AVR
MISO, Returned from

Target AVR

Programming Enable $AC 53 xx yy $zz AC 53 xx

Read Device Code $1E at Address $00 $30 nn 00 mm $yy 30 nn 1E
5
0943E–AVR–08/08

Table 6 shows an example reading the Device Code from an AT90S1200.

Flash Program
Memory Access

When the part has been identified, it is time to start accessing the Flash memory. A Chip Erase
should be performed before programming the Flash memory. Depending on the target device
the Flash is programmed using “Byte” or “Page” mode.

For devices with Byte Programming mode each Flash location is dressed and programmed indi-
vidually. In Page Programming mode, a temporary Page buffer is first filled, and then
programmed in one single write cycle. This mode reduces the total Flash programming time. A
device will only have one of these modes available. A device with Byte Programming mode do
not have the Page Programming option. A device with Page Programming mode of the Flash
will, however, use byte programming for the EEPROM memory.

Regardless if the device uses Byte Programming mode or Page Programming mode the Flash
will be read one byte at the time using the “Read Flash Program Memory” command. The com-
mand sends a memory address ($aa bb) to select a 16-bit word, and selects low or high byte
with the H bit in the command byte (0 is low, 1 is high byte). The byte stored at this address is
then returned from the target AVR microcontroller in byte 4.

Usually, each 16-bit word in Flash contains one AVR instruction. Assuming the instruction stored
at address $104 is “add r16,r17”, the op-code for this instruction would be stored as $0F01.
Reading address $104 serially, the expected result returned in byte 4 will be $0F from the high

Table 4. Allowed Device Codes

Address Code Valid Codes

$00 Vendor Code $1E indicates manufactured by Atmel
$00 indicates the device is locked, see below

$01 Part Family and Flash Size $9n indicates AVR with 2n kB Flash memory

$02 Part Number Identifies the part, see the file avr910.asm for a
complete listing of supported devices

Table 5. Part Number Identification Examples

Part Family and Flash Size Part Number Part

$90 $01 AT90S1200

$91 $01 AT90S2313

$92 $01 AT90S4414

$93 $01 AT90S8515

$FF $FF Device Code Erased (or Target Missing)

$01 $02 Device Locked

Table 6. Example, Reading the Device Code From an AT90S1200, Code $1E 90 01 Expected

Action
MOSI, Sent to

Target AVR
MISO, Returned from

Target AVR

Read Vendor Code at Address $00 $30 xx 00 yy $zz 30 xx 1E

Read Part Family and Memory Size at $01 $30 nn 01 mm $yy 30 nn 90

Read Part Number at Address $02 $30 xx 02 yy $mm 30 xx 01
6
0943E–AVR–08/08

AVR910

AVR910
byte, and $01 from the low byte. The data on the MISO and MOSI lines will look like shown in
Table 7.

Writing to the Flash memory will, however, differ depending on the available programming
mode.

For devices using Byte Programming mode bytes are written with the “Write Program Flash
Memory” command. This command sends a memory address ($aa bb) to select a 16-bit word,
and selects low or high byte with the H bit (0 is low, 1 is high byte). The byte to be stored is then
sent to the target AVR microcontroller in byte 4.

For devices using Page Programming mode the Flash is programmed in two steps. First a tem-
porary Page buffer is filled using the “Load Program Memory Page” command. Each byte in this
buffer can be directly accessed. Once the entire Page buffer is filled, it can be written to the
Flash Memory using the “Write Program Memory Page” command.

In some devices, there is no method to detect when the Flash write cycle has ended. For this
reason, the programmer presented in this application note waits N ms before attempting to send
another command to the interface (the delay N will depend on target device, and can be found in
the programming section of the datasheet). For some devices it is possible to use polling. When
a byte is being programmed into the Flash or EEPROM, reading the addressed location being
programmed will give a value M (often $FF). At the time the device is ready for a new byte, the
programmed value will read correctly. This can be used to determine when the next byte can be
written. When programming the value M polling will not work, and a delay N should be used
before writing the next value. Polled mode will decrease the time required to program a device.

Table 7. Example, Reading “add r16,r17” as $0F01 From Flash Memory Location $104

Action
MOSI, Sent to

Target AVR
MISO, Returned from

Target AVR

Read $01 at address $104, low byte $20 01 04 xx $zz 20 01 01

Read $0F at address $104, high byte $28 01 04 yy $xx 28 01 0F
7
0943E–AVR–08/08

EEPROM Data
Memory Access

Using the “Read EEPROM Data Memory” command, EEPROM contents can be read one byte
at a time. The command sends a memory address ($aa bb) to select a byte location in the
EEPROM.

EEPROM is written one byte at a time, with the “Write EEPROM Memory” command. This com-
mand selects the byte to write just like “Read EEPROM Memory”, and transfers the data to be
written in the last byte sent to the target. For some devices there is no method to detect when
the write cycle has ended. The programmer should simply wait N ms before attempting to send
another command to the interface (the delay N will depend on target device, and can be found in
the programming section of the datasheet). For increased programming speed, polling can be
used as described in the “Flash Program Memory Access” section. An example of an EEPROM
Write is shown in Table 10.

Lock Bits Access To protect memory contents from being accidentally overwritten, or from unauthorized reading,
the Lock bits can be set to protect the memory contents. As shown on Table 11, the memories
can be either protected from further writing, or you may completely disable both reading and
writing of memories on the chip.

In some devices the Lock bits can not be read, and setting Lock bits can not be verified by the
programmer. To check that the Lock bits have been set properly in these devices, one should
attempt to alter a location in EEPROM. When Lock bit 1 is set, memory locations are not altered.
When both Lock bits 1 and 2 are set, no location can be read, and the result returned will be the
Low byte of the address passed in the command. Setting only Lock bit 2 will have no protective
effect. Before the chip is protected from reading, it has to be successfully protected from writing.

Table 8. Example, Writing “add r17,r18” as $0F12 to Flash Memory Location $10C (Byte Pro-
gramming Mode)

Action
MOSI, Sent to

Target AVR
MISO, Returned from

Target AVR

Write $12 at address $10C, low byte $60 01 0C 12 $zz 60 01 0C

Wait N ms

Write $0F at address $10C, high byte $68 01 0C 0F $xx 68 01 0C

Wait N ms

Table 9. Example, Reading $ab From EEPROM Location $3F

Action
MOSI, Sent to

Target AVR
MISO, Returned from

Target AVR

Read $ab at address $3F $A0 00 3F xx $zz A0 00 AB

Table 10. Example, Writing $0F to EEPROM Location $11

Action
MOSI, Sent to

Target AVR
MISO, Returned from

Target AVR

Write $0F at address $11 $C0 00 11 0F $zz C0 00 11

Wait N ms
8
0943E–AVR–08/08

AVR910

AVR910
The Lock bits will only prevent the programming interface from altering memory contents. The
core can read the Flash program memory and access the EEPROM as usual, independent of
the Lock bit setting.

The only method to regain access to the memory after setting the lock bits, is by erasing the
entire chip with a “Chip Erase” command. The lock bits will be cleared to 1, disabling the protec-
tion, only following a successful clearing of all memory locations.

On Chip Erase, the Lock bits obtain the value 1, indicating the bit is cleared. Although the opera-
tion of enabling the protection is referred to as “setting” the Lock bit, a zero value should be
written to the bit to enable protection.

Chip Erase Operation Before new contents can be written to the Flash Program Memory, the memory has to be
erased. Without erasing, it is only possible to program bits in Flash memory to zero, not selec-
tively setting a bit to one. Erasing the memory is performed with the “Chip Erase” command.
This command will erase all memory contents, both Flash Program Memory and EEPROM.

Only after a successful erase of the memory, the Lock bits will be erased. This method ensures
that data in the memories are kept secured until all data have been completely erased.

After a Chip Erase, all memory contents will be read as $FF.

The only way to end a Chip Erase cycle is by temporarily releasing the Reset line.

Table 11. Lock Bits Protection Modes

Lock Bit 1 Lock Bit 2 Protection Type

1 1 No Memory Lock

0 1 Further Programming of both Flash and EEPROM Disabled

0 0 Further Programming and Verification of both Flash and EEPROM
Disabled

Table 12. Example, Setting Lock Bit 1 to Disable Further Programming

Action
MOSI, Sent to

Target AVR
MISO, Returned from

Target AVR

Set Lock Bit 1, Disable Programming $AC FD xx yy $zz AC FD xx

Wait N ms

Table 13. Example, Erasing all Flash Program Memory and EEPROM Contents

Action
MOSI, Sent to

Target AVR
MISO, Returned from

Target AVR

Erase Chip $AC 8x yy nn $zz AC 8x yy

Wait N ms

Release RESET to end the erase
9
0943E–AVR–08/08

A Simple Low-cost
In-System
Programmer

This application note will not discuss all aspects of an In-System Programmer. Instead, it will
show how a simple low-cost programmer can be made, using only an AT90S1200 and a few dis-
crete components.

The programmer will plug into any serial port of any PC. The AT90S1200 doesn’t come with a
hardware UART, but the software will run a half duplex UART by using the Timer/Counter0 to
clock data. The AT90S1200 also takes care of programming the target AVR by running the Mas-
ter SPI entirely in software.

The schematics to the programmer can be seen in Figure 4. Power to the AT90S1200 is taken
from the target system. The negative voltage needed to communicate serially with the PC is
stored in C100 when receiving a logical one (negative line voltage).

The transmit line is fed with this negative voltage from C100, when transistor Q100 is closed.
This sends a logical one on the transmit line. Logical zeros (positive voltage) is sent by opening
Q100, connecting VCC (actually VCC - 0.2V) to the transmit line.

Some older PC systems might have serial port not accepting voltages below +10 volts as logical
zero. This, however, is not a problem with the majority of existing PCs.

The file avr910.asm contains the firmware for the AT90S1200.

Figure 4. A Low-cost In-System Programmer

U100

AT90S1200

GND
AIN0/PB0
AIN1/PB1

PB2
PB3
PB4
PB5
PB6
PB7

XTAL2

VCC
RESET
PD0
PD1
PD2/INT0
PD3
PD4
PD5
PD6
XTAL1

10
12
13
14
15
16
17
18
19
4

20
1
2
3
6
7
8
9
11
5

1M0
R106

XC1004 MHZ

VCC

MOSI

GND

J101

2

4

6

1

3

5

MISO

SCK

RESET

CONNECTOR AS
SEEN FROM BELOW

GND

C101 100N

R
10

3
4K

7

R
10

2
4K

7

4K7

4K7

PAD

RXD
TXD

R
10

1
4K

7

R
10

0
4K

7

BC847C
Q101

R105

D101
BAS16

BAS16

D100

20V

1.0uF
+
C100

RECEIVE

TRANSMIT

1

2

3

6

7

5

4
8

9

9-PIN D-SUB
FEMALE

R104J100
BC857C

Q100
10
0943E–AVR–08/08

AVR910

AVR910
Part List
Table 14. Part List

QTY Position Value Device Tolerance Vendor Comment

 1 C100 1U0/20V CE1U020V 20% PHILIPS +++ TANTAL CAPACITOR, SMD,
(EIA3216)

 1 C101 100N/50V C08B100N 10%_X7R MURATA +++ CERAMIC CAPACITOR, 0805, X7R

 2 D100,D101 75V/100MA BAS16 PHILIPS +++ SWITCH DIODE, SO-23 PACKAGE

 1 J100 9 PIN DSUB-9FSOL HARTING +++ 9 PIN D-SUB, FEMALE, SOLDER,
1.6 MM ROW SPACING, 2.54 MM PIN

 1 JCABLE 6 PIN HEADER6FC HARTING +++ 6 PIN HEADER (IDC), FEMALE,
CABLE MOUNT

 1 Q100 45V/100MA BC857C PHILIPS +++ SMD NPN TRANSISTOR, SO-23
PACKAGE

 1 Q101 45V/100MA BC847C PHILIPS +++ SMD PNP TRANSISTOR, SO-23
PACKAGE

 6 R100-105 4K7 R08_4K7 1% KOA +++ RESISTOR, 0.125W, 1%, 0805

 1 R106 1M0 NOT_USED 1% KOA +++ RESISTOR, 0.125W, 1%, 0805

 1 U100 SOIC-20 AT90S1200-4SC ATMEL AVR MICROCONTROLLER, 20 PIN
SOIC

 1 XC100 4.0MHZ CSTCC4.00MG 0.5% MURATA/AVX +++ CERAMIC RESONATOR, 4.00 MHZ,
SMD (AVX: PRBC-4.0 B R)

 1 HOUSING 9 PIN D-SUB HOUSE 0.5% AMP +++ 9 PIN D-SUB PLASTIC HOUSING

 1 CABLE 6 LEAD FLATCABLE HARTING +++ FLATCABLE, 6 LEAD, 300 MM

 1 PCB FR4/1.6MM A9702.3.1000.A ATMEL PRINTED CIRCUIT BOARD NO.
A9702.3.1000.A
11
0943E–AVR–08/08

0943E–AVR–08/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	Features
	Introduction
	The Programming Interface
	Hardware Design Considerations
	GND
	RESET
	SCK
	MOSI
	MISO
	VCC

	Programming Protocol
	Command Format
	Enable Memory Access
	Device Code
	Flash Program Memory Access
	EEPROM Data Memory Access
	Lock Bits Access
	Chip Erase Operation

	A Simple Low-cost In-System Programmer

	Part List

